[1]MAÑOSA L, PLANES A. Materials with Giant Mechanocaloric Effects: Cooling by Strength[J]. Advanced Materials, 2017, 29(11): 1603607. [2]MOYA X, KAR-NARAYAN S, MATHUR N D. Caloric materials near ferroic phase transitions[J]. Nat. Mater., 2014, 13: 439-450. [3]MAÑOSA L, GONZÁLEZ-ALONSO D, PLANES A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy[J]. Nature Materials, 2010, 9(6): 478-481. [4]ARACELI A, POL L, JI-YEOB K, et al. Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB0.03[J]. Adv. Mater., 2019, 31: 1903577. [5]MAÑOSA L, GONZÁLEZ-ALONSO D, PLANES A, et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound[J]. Nature Communications, 2011, 2(1): 595. [6]GOREV M V, BOGDANOV E V, FLEROV I N. Conventional and inverse barocaloric effects around triple points in ferroelastics (NH4)3NbOF6 and (NH4)3TiOF5[J]. Scripta Mater., 2017, 139: 53-57. [7]AZNAR A, LLOVERAS P, ROMANINI M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI[J]. Nature Communications, 2017, 8(1): 1851. [8]BERMÚDEZ-GARCÍA J M, SÁNCHEZ-ANDÚJAR M, CASTRO-GARCÍA S, et al. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures[J]. Nature Communications, 2017, 8(1): 15715. [9]LI B, KAWAKITA Y, OHIRA-KAWAMURA S, et al. Colossal barocaloric effects in plastic crystals[J]. Nature, 2019, 567(7749): 506-510. [10]MAÑOSA L, STERN-TAULATS E, PLANES A, et al. Barocaloric effect in metamagnetic shape memory alloys[J]. Status Solidi B, 2014, 251: 2114-2119. [11]STERN-TAULATS E, PLANES A, LLOVERAS P, et al. Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys[J]. Acta Mater., 2015, 96: 324-332. [12]HE X J, XU K, WEI S X, et al. Barocaloric effect associated with magneto-structural transformation studied by an effectively indirect method for the Ni58.3Mn17.1Ga24.6 Heusler alloy[J]. Journal of Materials Science, 2017, 52(5): 2915-2923. [13]HE X J, WEI S X, KANG Y R, et al. Enhanced barocaloric effect produced by hydrostatic pressure-induced martensitic transformation for Ni44.6Co5.5Mn35.5In14.4 Heusler alloy[J]. Scripta Materialia, 2018, 145: 58-61. [14]HE X J, KANG Y R, WEI S X, et al. A large barocaloric effect and its reversible behavior with an enhanced relative volume change for Ni42.3Co7.9Mn38.8Sn11 Heusler alloy[J]. Journal of Alloys and Compounds, 2018, 741: 821-825. [15]ZHANG Y L, HE X J, LI Z, et al. Electrical transport properties and giant baroresistance effect at martensitic transformation of Ni43.7Fe5.3Mn35.4In15.6 Heusler alloy[J]. Applied Physics Letters, 2018, 112(18): 182402. [16]AZNAR A, GRÀCIA-CONDAL A, PLANES A, et al. Giant barocaloric effect in all-d-metal Heusler shape memory alloys[J]. Physical Review Materials, 2019, 3(4): 044406. [17]XU X, NAGASHIMA A, NAGASAKO M, et al. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys[J]. Applied Physics Letters, 2017, 110(12): 121906. [18]LIU C Q, LI Z, ZHANG Y L, et al. Realization of metamagnetic martensitic transformation with multifunctional properties in Co50V34Ga21 Heusler alloy[J]. Applied Physics Letters, 2018, 112(21): 211903. [19]NI Z T, LI Z, CAO Y M, et al. Influence of hydrostatic pressure on martensitic transformation and strain behavior for Co52V29+xGa19-x Heusler alloys[J]. Journal of Materials Science, 2020, 55(19): 8317-8324. [20]PECHARSKY V K, GSCHNEIDNER JR K A. Giant Magnetocaloric Effect in Gd5(Si2Ge2)[J]. Physical Review Letters, American Physical Society, 1997, 78(23): 4494-4497. [21]TEGUS O, BRÜCK E, BUSCHOW K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415(6868): 150-152. [22]YUCE S, BARRIO M, EMRE B, et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2[J]. Applied Physics Letters, American Institute of Physics, 2012, 101(7): 071906. [23]STERN-TAULATS E, PLANES A, LLOVERAS P, et al. Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys[J]. Acta Materialia, 2015, 96: 324-332. [24]MATSUNAMI D, FUJITA A, TAKENAKA K, et al. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN[J]. Nature Materials, 2015, 14(1): 73-78. |