曲靖师范学院学报 ›› 2024, Vol. 43 ›› Issue (6): 63-73.

• 计算机科学研究 • 上一篇    下一篇

基于无人机图像比对的违章建筑检测方法

魏松林1, 林静敏2, 李伟权1, 唐凯3,4   

  1. 1.厦门海洋职业技术学院 信息工程学院,福建 厦门 361100;
    2.厦门城市职业学院 人工智能学院,福建 厦门 361008;
    3.集美大学 海洋信息工程学院,福建 厦门 361021;
    4.厦门唯识筋斗云科技有限公司,福建 厦门 361115
  • 收稿日期:2024-06-26 出版日期:2024-12-17 发布日期:2024-12-17
  • 作者简介:魏松林,厦门海洋职业技术学院信息工程学院讲师,博士,主要从事图像处理、人工智能应用、电子系统设计研究.
  • 基金资助:
    福建省中青年教师教育科研项目“基于FPGA的海上目标的智能检测技术研究与实现”(JAT220627);厦门市自然科学基金项目“海上目标的快速与智能检测技术研究”(3502Z202374070);厦门海洋职业技术学院高层次人才科研启动经费专项“海上目标的快速与智能检测技术研究”(KYG202206)

An Illegal Building Detection Method Based on UAV Image Comparison

WEI Songlin1, LIN Jingmin2, LI Weiquan1, TANG Kai3,4   

  1. 1. School of Information Engineering, Xiamen Ocean Vocational College, Xiamen Fujian 361100;
    2. School of Artificial Intelligence, Xiamen City University, Xiamen Fujian 361008;
    3. School of Marine Information Engineering, Jimei University, Xiamen Fujian 361021;
    4. Xiamen Weishi Somersault Cloud Technology Co., Ltd., Xiamen Fujian 361115, China
  • Received:2024-06-26 Published:2024-12-17 Online:2024-12-17

摘要: 针对当前违章建筑图像识别和图像变化检测中存在的误检、漏检等问题,提出了一套基于无人机图像比对的违章建筑检测方法,创新性地采用YCrCb颜色空间三分量分别进行差分运算和阈值化处理,结合图像分类算法排除非施工活动引起的图像变化,通过结构相似性检测,对新旧时相变化区域相似度进行评估,识别出在建违章建筑引起的图像变化区域.与目前主流的基于无人机图像的非单一类型违章建筑物检测方法相比,4032×3024分辨率图像的检测时间缩短40.9%至4.08 s,正确率提高15.3%达到86.3%且无漏检测. 结果表明,本方法可有效、快速识别在建违章建筑区域,有利于城市管理人员及时发现并处理这些违章行为,从而提高城市管理的效率和响应速度.

关键词: 违章建筑检测, 无人机图像比对, YCrCb颜色空间, 分类过滤

Abstract: In response to the problems of false positives and false negatives in the current illegal building image recognition and image change detection, this paper proposes a method for detecting illegal building using UAV (Unmanned Aerial Vehicle) images, innovatively using the YCrCb color space to perform differential operations and thresholding on the three components separately, and combining image classification algorithms to exclude image changes caused by non-construction activities. Finally, by using structural similarity detection to evaluate the similarity of image change regions in new and old-time phases, the method identifies the image change regions caused by illegal building. Compared with the current mainstream non-single type violation building detection methods based on drone images, the detection time of 4032×3024 resolution image is reduced by 40.9% to 4.08 seconds, and the accuracy is improved by 15.3% to reach 86.3%, with no missed detections. The results show that this method can effectively and quickly identify areas where illegal building is underway, which is beneficial for city managers to discover and handle these illegal activities in a timely manner, thus improving the efficiency and response speed of urban management.

Key words: illegal building detection, UAV image comparison, YCrCb color space, classification filtering

中图分类号: