曲靖师范学院学报 ›› 2024, Vol. 43 ›› Issue (6): 74-81.

• 计算机科学研究 • 上一篇    下一篇

基于改进粒子群算法的自动引导小车路径规划

罗子灿1,2, 黄宇轩1,2, 何广1,2   

  1. 1.湖南工业大学 商学院,湖南 株洲 412007;
    2.湖南省包装经济研究基地,湖南 株洲 412007
  • 收稿日期:2024-04-26 出版日期:2024-12-17 发布日期:2024-12-17
  • 作者简介:罗子灿,湖南工业大学商学院讲师,博士,主要从事运营管理和营销管理研究.
  • 基金资助:
    湖南省包装经济研究基地项目“考虑政府补贴的包装生态标签认证策略研究”(2022BZJG08)、 “EPR制度下BYOC行为对包装生产策略影响研究”(23JD035);湖南工业大学商学院“跨境电商”专项研究项目“面向跨境电商仓储的搬运机器人路径规划研究”(2023KJDS14).

Path Planning of Automatic Guided Vehicle Based on Improved Particle Swarm Optimization Algorithm

LUO Zican1,2, HUANG Yuxuan1,2, HE Guang1,2   

  1. 1. School of Business,Hunan University of Technology , Zhuzhou Hunan 412007;
    2. Hunan Provincial Packaging Economy Research Base,Zhuzhou Hunan 412007,China
  • Received:2024-04-26 Published:2024-12-17 Online:2024-12-17

摘要: 针对传统粒子群算法易收敛到局部最优、搜索效率低等问题,提出一种改进算法并将其运用于自动引导小车(Automated Guided Vehicle,AGV)的路径规划问题中. 首先,引入非线性递减惯性权重,调节不同时期粒子自身对寻优的影响. 然后,对两个学习因子进行自适应改进,增强算法的局部和全局搜索能力. 最后,提出考虑路径长度和平滑度的适应度函数,并通过干扰粒子速度来摆脱局部最优区域,提高搜寻路径的质量. 在地图规模和障碍复杂度均不同的四种环境中进行多次实验,仿真结果表明,改进后算法相较于原算法,搜寻的平均路径缩短7.9%,平均迭代次数减少了20.2%,体现出更优越的路径规划能力.

关键词: 路径规划, 粒子群算法, 惯性权重, 学习因子

Abstract: Aiming at the problems of traditional particle swarm optimization algorithms easily converging to local optima and low search efficiency, an improved algorithm is proposed and applied to the path planning problem of Automated Guided Vehicle (AGV). Firstly, non-linear decreasing inertia weights are introduced to adjust the influence of particles themselves on optimization at different stages. Then, adaptive improvements are made to the two learning factors to enhance the algorithm's local and global search capabilities. Finally, a fitness function considering path length and smoothness is proposed, and local optimal regions are eliminated by interfering with particle velocity to improve the quality of the search path. Multiple experiments were conducted in four environments with different map sizes and obstacle complexity. Simulation results showed that the improved algorithm reduced the average search path by 7.9% and the average iteration times by 20.2% compared to the original algorithm, demonstrating superior path planning capabilities.

Key words: path planning, particle swarm optimization algorithm, inertial weight, learning factors

中图分类号: