[1] 李雪. 基于多角度图像的建筑物三维重建 [D]. 哈尔滨: 哈尔滨工程大学, 2024. [2] 李昌鹏. 基于无人机影像的违章建筑检测方法研究 [D]. 北京: 中国地质大学, 2020. [3] 冯笑雨. 基于塔基监控图像的建设施工用地识别与空间定位方法研究 [D]. 南京: 南京师范大学, 2019. [4] 陈孝烽. 定点监控下可疑违章建筑物识别关键技术研究 [D]. 南京: 东南大学, 2020. [5] 严德赛. 基于数字图像处理的违章建筑物自动检测研究 [D]. 武汉: 湖北大学, 2022. [6] 张怡, 陈平. 基于深度置信网络的无人机航拍图像变化检测 [J]. 测试技术学报, 2020, 34(3): 190-196. [7] 梁哲恒, 邓鹏, 姜福泉, 等. 基于卷积神经网络的无人机影像违章建筑检测应用 [J]. 测绘通报, 2021 (4): 111-115. [8] LIU Y, SUN Y, TAO S, et al. Discovering potential illegal construction within building roofs from UAV images using semantic segmentation and object-based change detection [J]. Photogrammetric Engineering & Remote Sensing, 2021, 87(4): 263-271. [9] 丁立早. 基于深度学习的违章建筑物检测技术研究 [D]. 南京: 东南大学, 2022. [10] 雷思文, 朱福珍. 基于ORB和改进RANSAC的无人机遥感图像配准算法 [J]. 黑龙江大学自然科学学报, 2020, 37(5): 623-630. [11] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [12] BAY H, TUYTELAARS T, VAN-GOOL L. Surf: Speeded up robust features [C]//Proceedings of 2006 European conference on computer vision. Graz, Austria: Springer, 2006: 404-417. [13] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF [C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona: IEEE, 2012: 2564-2571. [14] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: Binary robust independent elementary features [C]//Proceedings of 2010 European conference on computer vision. Heraklion, Crete, Greece: Springer, 2010: 778-792. [15] 叶坤涛, 李文, 舒蕾蕾, 等. 结合改进显著性检测与NSST的红外与可见光图像融合方法 [J]. 红外技术, 2021, 43(12): 1212-1221. [16] GHIASI G, LIN T Y, LE Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 7036-7045. [17] ABOBAKR A, HOSSNY M, NAHAVANDI S. SSIM Layer: towards robust deep representation learning via nonlinear structural similarity [C]//2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy: IEEE, 2019: 1234-1238. |