[1] LIN S, YANG X, LIU L, et al. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application [J] . J Environ Manage, 2022, 301: 113921. [2] GAO R L, FU Q L, HU H Q, et al. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate [J] . J Hazard Mater, 371 (2019) 191-197. [3] 邹凡,何春霞,张杨燕,等. 五种作物秸秆生物炭对重金属Pb2+的吸附性的比较 [J] .材料科学与工程学报, 2018, 36(6): 993-997+1009. [4] 闫郑方,张嵚,余鑫,等. 秸秆生物炭的特性及其在重金属污染农田中的应用 [J] .湖南师范大学自然科学学报,2023,46(1):38-47. [5] 谢丹丹,谯华,张煜行,等. 水稻秸秆生物炭对水中镉离子的吸附 [J] .山东化工, 2021, 50(17): 260-263. [6] LIU R P, XU Y N, ZHANG J H, et al. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China [J] . China Geology, 2020(3): 402-410. [7] 杨育振,刘森荣,杨勇,等. 黄石市城市边缘区土壤重金属分布特征,风险评价及溯源分析 [J] . 物探与化探, 2021, 45(5):1147-1156. [8] 尹德超,祁晓凡,王雨山,等. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价 [J] . 中国地质, 2022, 49(3): 979-992. [9] GAO R L, HU H Q, FU Q L, et al. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry [J] . Science of The Total Environment, 2020, 730: 134262. [10] 李季东,温冬花. 水环境中重金属的污染及其检测技术研究 [J] .中国金属通报,2020 (5):214-215. [11] 何佳,时迪,王贝贝,等. 10种典型重金属在八大流域的生态风险及水质标准评价 [J] .中国环境科学,2019,39 (7):2970-2982. [12] 霍丽丽,姚总路,赵立欣,等. 秸秆综合利用减排固碳贡献及潜力研究 [J] .农业机械学报, 2022, 53(1): 349-358. [13] 汤星阳. 秸秆快速降解菌系的构建及其在有机污染物治理中的应用 [D].杭州:浙江大学,2020. [14] 简敏菲,高凯芳,余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J] .环境科学学报,2016,36(5):1757-1765. [15] 何佳闻,何春霞,郭航言,等. 5种秸秆生物炭吸附亚甲基蓝及其性能对比研究 [J] . 南京农业大学学报,2019,42(2):382-388. [16] 王震宇,刘国成,MONICA X,等.不同热解温度生物炭对Cd(II)的吸附特性 [J] .环境科学,2014,35(12):4735-4744. [17] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(II)的吸附机理研究 [J] .农业环境科学学报,2012,31(11): 2277-2283. [18] 谭丹,王衡,梅闯,等.高低硅秸秆生物炭的表征及对Cd2+的吸附特性与机理[J].农业环境科学学报,2023,42(2):339-351. [19] 徐亮,王豹祥,汪健,等.不同热解温度制备的水稻秸秆生物炭理化特性分析 [J] .土壤通报,2020,51(1):136-142. [20] 罗洋,梁运信,杨凯德,等.不同秸秆炭的制备及其对镉污染黄壤中镉的钝化效果 [J]. 贵州农业科学,2020,48(2):29-33. [21] 罗烨. 芦竹制备生物炭的特性表征及对土壤N2O排放的抑制 [D] .青岛:中国海洋大学,2012. [22] XIAO H Y, LIN Q M, LI G T, et al. Comparison of biochar properties from 5 kinds of halophyte produced by slow pyrolysis at 500 °C [J] . Biochar, 2022(4):12. [23] 杨育振,高宝龙,黄屹,等. 中高热解温度下秸杆基生物炭对铅、镉的吸附特性研究 [J] .中国地质,50(1):52-60. [23] 李瑞月,陈德,李恋卿,等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附 [J] .农业环境科学学报,2015,34(5):1001-1008. [25] 王彤彤,马江波,曲东,等. 两种木材生物炭对铜离子的吸附特性及其机制 [J] .环境科学,2017,38(5):2161-2171. [26] HE J Y, LI YL, WANG C M, et al. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β- cyclodextrin polymers [J] . Applied Surface Science, 2017, 426: 29-39. [27] 胡振东. 改性稻草秸秆对重金属的吸附性能探究 [D] .合肥:安徽建筑大学, 2016. [28] 黄慧珍. K2FeO4改性稻草秸秆对Cd2+的吸附性能研究 [J] .长春师范大学学报,2021, 40(8):91-94+132. [29] 许亚琼,王雪佳,李荣华,等. 纳米零价铁改性生物炭对污染土壤中Cd稳定化效果及作用机制研究 [J] . 农业环境科学学报, 2022,41(11):2478-2487. [30] CHEN X Y, LI H P, LIU W Y, et al. Low-temperature constructing N-doped graphite-like mesoporous structure biochar from furfural residue with urea for removal of chlortetracycline from wastewater and hydrothermal catalytic degradation mechanism [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600:124873. [31] 何玉垒,宋宁宁,林大松,等. 氧化老化过程对生物炭吸附镉的影响及机制 [J].农业环境科学学报, 2021,40(9): 1877-1887. [32] ZHOU Y, LIU X, XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modeling [J] . Bio-resource Technology, 2017, 245:266-273. [33] 马凯悦,张浩,宋宁宁,等. 氧化老化玉米秸秆生物炭吸附镉机理研究 [J] .农业环境科学学报, 2022, 41(6): 1230-1240. [34] 南志江,蒋煜峰,毛欢欢,等. 玉米秸秆生物炭对灰钙土吸附金霉素的影响 [J] .环境科学, 2021, 42(12): 5896-5904. [35] PANG Y, ZENG G M, TANG L, et al. Preparation and application of stability enhanced magnetic anoparticles for rapid removal of Cr(VI)[J]. Chemical Engineering Journal, 2011, 175: 222-227. |