[1] 傅里叶.热的解析理论[M]. 桂质亮,译. 北京:北京大学出版社,2008:15-16. [2] LIVI R, LEPRI S. Heat in one dimension [J]. Nature, 2003, 42(23): 327-327. [3] LEPRI S, LIVI R, POLITI A. Thermal conduction in classical low-dimensional lattices [J]. Physics Reports, 2003, 377: 1-80. [4] DHAR A. Heat transport in low-dimensional systems [J]. Advances in Physics, 2008, 57(5):457-537. [5] LEPRI S. Thermal Transport in Low Dimensions [Z]. Lecture Notes in Physics 921, 2016. [6] ZHONG Y, ZHANG Y, WANG J, et al. Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions [J]. Physical Review E,2012, 85: 060102(R). [7] ZHONG Y, ZHANG Y, WANG J,et al. Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions [J]. Chinese Physics B,2013, 22 (7): 070505. [8] CHEN S, ZHANG Y, WANG J, et al. Key role of asymmetric interactions in low-dimensional heat transport [J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 033205. [9] SAVIN A V,KOSEVICH Y A. Thermal conductivity of molecular chains with asymmetric potentials of pair interactions [J]. Physical Review E,2014, 89: 032102. [10] JIANG J, ZHAO H. Modulating thermal conduction by the axial strain [J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 093208. [11] ZHAO H. Identifying Diffusion Processes in One-Dimensional Lattices in Thermal Equilibrium [J]. Physical Review Letters,2006, 96: 140602. [12] CHEN S, ZHANG Y, WANG J, et al. Diffusion of heat, energy, momentum, and mass in one-dimensional systems [J]. Physical Review E, 2013, 87:032153. [13] TODA M. Vibration of a Chain with Nonlinear Interaction [J]. Journal of the Physical Society Japan, 1967, 22: 431. |