[1] POIZOT P, LARUELLE S, GRUGEON S, et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803):496-499. [2] PARK M H, KIM M G, JOO J, et al.Silicon Nanotube Battery Anodes[J]. Nano Letters, 2009, 9(11): 3844-3847. [3] XU M W, HAN J, LI G N, et al.Synthesis of novel book-like K0.23V2O5 crystals and their electrochemical behavior in lithium batteries[J]. Chemical Communications, 2015, 51(83):15290-15293. [4] SHI Z L, RU Q, CHENG S K, et al.Hierarchically Rambutan-Like Zn3V3O8 Hollow Spheres as Anodes for Lithium-/Potassium-Ion Batteries[J]. Energy Technology, 2020, 8(5):2000010-2000017. [5] ZHENG H, YANG Y, LIU X, et al.Controllable synthesis of FeVO4@TiO2 nanostructures as anode for lithium ion battery[J]. J Nanopart Res, 2017,19(7): 243-250. [6] LU J S, MAGGAY I V B, LIU W R,et al.CoV2O4: a novel anode material for lithium-ion batteries with excellent electrochemical performance[J].Chemical Communications, 2018, 54(25):3094-3097. [7] GHANI F, NAH I W, KIM H S, et al.Facile One-Step Hydrothermal Synthesis of the rGO@Ni3V(2)O(8) Interconnected Hollow Microspheres Composite for Lithium-Ion Batteries[J].Nanomaterials, 2020, 10(12):2389-2400. [8] BUTT F K, CAO C, WAN Q, et al.Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage[J].International Journal of Hydrogen Energy, 2014, 39(15):7842-7851. [9] CORPUZ D J, NGUYEN M T, CORPUZ R D,et al.Porous ZnV2O4 Nanowire for Stable and High-Rate Lithium-Ion Battery Anodes[J].ACS Appl Nano Mater, 2019, 2(7):4247-4256. [10] VIJAYAKUMAR S, LEE S H, RYU K S.Synthesis of Zn3V2O8 nanoplatelets for lithium-ion battery and supercapacitor applications[J].RSC Adv, 2015, 5(111):91822-91828. [11] ZHU X M, JIANG X Y, XIAO L F, et al.Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery[J]. Current Applied Physics, 2015, 15(4):435-440. [12] BIE C F, PEI J, CHEN G, et al.Hierarchical Zn3V3O8/C composite microspheres assembled from unique porous hollow nanoplates with superior lithium storage capability[J].J Mater Chem A, 2016, 4(43):17063-17072. [13] BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811):490-493. [14] SUZUKI T, HASEGAWA T, MUKAI S R, et al.A theoretical study on storage states of Li ions in carbon anodes of Li ion batteries using molecularorbital calculations[J].Carbon, 2003, 41(10):1933-1939. [15] ZHANG Y B, TAN Y W, STORMER H L, et al.Experimental observation of the quantum Hall effect and Berry’s phase in grapheme[J]. Nature, 2005, 438(7065):201-204. [16] YOO E J,KIM J, HOSONO E, et al.Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J]. Nano Lett,2008, 8(8):2277-2282. [17] PENG B, CHEN J.Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells[J]. Coordination Chemistry Reviews, 2009, 253(23-24):2805-2813. [18] YANG S F, ZAVALIJ P Y, WHITTINGHAM M S.Anodes for lithium batteries: tin revisited[J]. Electrochemistry Communications, 2003, 5(7):587-590. [19] WU C, HUANG X, WANG G, et al.Highly Conductive Nanocomposites with Three-Dimensional, Compactly Interconnected Graphene Networks via a Self-Assembly Process[J]. Advanced Functional Materials, 2013, 23(4):506-513. [20] DANIELA C M, DMITRY V K, JACOB M B, et al.Improved Synthesis of Graphene Oxide[J]. ACS Nano, 2010(8):4806-4814. [21] HUANG J H, MA R Z, EBINA Y, et al.Layer-by-Layer Assembly of TaO3 Nanosheet/Polycation Composite Nanostructures: Multilayer Film, Hollow Sphere, and Its Photocatalytic Activity for Hydrogen Evolution[J]. Chem Mater,2010, 22(8):2582-2587. [22] LEE W J,CHUN Y G, JANG S J, et al.Hierarchical nanostructure of RuO2 hollow spheres with enhanced lithium ion storage and cyclic performance[J]. Journal of Alloys and Compounds, 2017, 711:611-616. [23] WANG G, YANG J, PARK J, et al.Facile synthesis and characterization of graphene nanosheets[J]. Journal of Physical Chemistry C, 2008, 112(22):8192-8195. [24] WU C, MAIER J, YU Y.Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries[J]. Advanced Functional Materials, 2015, 25(23):3488-3496. [25] LIU, X W, CHENG J X, LI W H, et al.Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite[J]. Nanoscale, 2014, 6(14):7817-7822. [26] YIN S S, TIAN T, KERSTIN S,et al.Key Factor Study for Amphiphilic Block Copolymer-Templated Mesoporous SnO2 Thin Film Synthesis: Influence of Solvent and Catalyst[J]. Adv Mater, 2020, 7(18):2001002-20010011. [27] WU Z S, REN W, WEN L, et al.Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance[J]. Acs Nano, 2010, 4(6):3187-3194. [28] CHEN Y M, DONG J C, QIU L, et al.A catalytic etching-wetting-dewetting mechanism in the formation of hollow graphitic carbon fiber[J].Chem, 2017,2(2):299-310. |