曲靖师范学院学报 ›› 2021, Vol. 40 ›› Issue (3): 11-16.

• 数学研究 • 上一篇    下一篇

一类四次Hamilton函数Abel积分的零点个数估计

王彦杰1, 曹勃1, 洪晓春2   

  1. 1.宁波职业技术学院 数学教研室,浙江 宁波 315800;
    2.云南财经大学 统计与数学学院,云南 昆明 650221
  • 收稿日期:2021-04-08 出版日期:2021-05-26 发布日期:2021-07-13
  • 作者简介:王彦杰,宁波职业技术学院数学教研室助教,主要从事常微分方程研究.
  • 基金资助:
    2020年宁波职业技术学院校级课题“四次Hamilton系统的极限环零点个数研究”(NZ21Q017).

Estimation of the Number of Zeros for Abel Integrals of Quadratic Hamiltonian Functions

WANG Yanjie1, CAO Bo1, HONG Xiaochun2   

  1. 1. School of Statistics and Mathematics, Ningbo Polytechnic, Ningbo Zhejiang 315800;
    2. School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming Yunnan 650221, China
  • Received:2021-04-08 Published:2021-05-26 Online:2021-07-13

摘要: 本文运用Picard-Fuchs方程法和Riccati方程法,研究了一类四次Hamilton函数Hx,y)=x2+y2+ax2y2+bx4+cy4的Abel积分零点个数问题,结论表明Abel积分在区间$(\frac{c}{a^{2}-4bc},0)$上,其零点个数不超过$3[\frac{n-1}{4}]+12[\frac{n-3}{4}]+22$.

关键词: Hamilton系统, Abel积分, Picard-Fuchs方程, Riccati方程

Abstract: In this paper, we use the Picard-Fuchs equation method and the Riccati equation method to study a class of four-time Hamiltonian function Hx,y)=x2+y2+ax2y2+bx4+cy4, the zero number of Abel integrals of such functions. The conclusion shows that the Abel integral is in the interval $(\frac{c}{a^{2}-4bc},0)$, the number of zeros does not exceed $3[\frac{n-1}{4}]+12[\frac{n-3}{4}]+22$.

Key words: Hamilton system, Abel integral, Picard-Fuchs equation, Riccati equation

中图分类号: