[1] ARNOLD V I.Ten problems[J]. Adv Soviet Math, 1990, 1: 1-8. [2] KHOVANSKY A G.Real analytic manifolds finiteness properties and complex Abelian integrals[J]. Funct Anal Appl, 1984, 18: 119-128. [3] VARCHENCO A N.Estimate of the number of zeros of Abelian integral depending on parameter and limit cycles[J]. Funct Anal Appl, 1984, 18: 98-108. [4] PETROV G S.Elliptic integrals and their nonoscillation[J]. Funct Anal Appl, 1986, 20: 37-40. [5] PETROV G S.Complex zeros of an elliptic integra[J]. Funct Anal Appl, 1987, 21: 247-248. [6] PETROV G S.Complex zeros of an elliptic integra[J]. Funct Anal Appl, 1989, 23: 160-161. [7] ZHAO Y L, ZHANG Z F.Linear estim ate of the num b er ofzeros of A belian integrals for a kind of quartic Hamiltonians[J]. J Differential Equations, 1999, 155: 73-88. [8] ZHOU X, LI C P.Estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians with two centers[J]. Appl Math Comput, 2008, 204: 202-209. [9] ZHOU X, LI C P.On the algebraic structure of Abelian integrals for a kind of pertubed cubic Hamiltonian systems[J]. J Math Anal Appl, 2009, 359:209-215. [10] ZHAO L Q, QI M H, LIU C J.The cylicity of period annuli of a class of quintic Hamiltonian systems[J]. J Math Anal Appl, 2013, 403:391-407. [11] HOROZOV E, ILIEV I D.Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians[J]. Nonlinearity, 1998, 11:1521-1537. [12] WU J J, ZHANG Y K, LI C P.On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians[J]. Appl Math Comput, 2014, 228:329-335. [13] YANG J H, ZHAO L Q.Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle[J]. Nonlinear Analysis: Real Wrold Applications, 2016, 27:350-365. [14] 杨纪华,刘媚,何志成.一类具有幂零中心四次Hamiltonian的Abelian 积分的零点个数[J]. 数学物理学报, 2016, 36A(5):937-945. [15] 杨纪华,闫洁,臧小芳.具有m条切换线的扰动微分系统的极限环[J],应用数学,2021,34(2):277-283. [16] 邓蕊,李宝毅,张永康.一类连续分段线性Hamilton系统在线性扰动下极限环个数的估计[J],天津师范大学学报(自然科学版),2020,40(3):1-5. [17] LI W G, ZHAO Y L, ZHANG Z F.Abelian integrals for quadratic centers having almost all their orbits formed by quadratic[J]. Nonlinearity, 2002, 15:863-885. |