[1] Zhang C, Wang H, Liu Y, et al. Automatic Keyword Extraction from Documents Using Conditional Random Fields[J]. Journal of Computer Information Systems, 2008, 4(3): 1169-1180.
[2] Chen P, Lin S. Automatic keyword prediction using Google similarity distance[J]. Expert Systems With Applications, 2010, 37(3): 1928-1938.
[3] Joachims T. Text Categorization with Suport Vector Machines: Learning with Many Relevant Features[M]. Berlin : Springer, 1998: 137-142.
[4] Hssina B, Merbouha A, Ezzikouri H, et al. A comparative study of decision tree ID3 and C4.5[J]. International Journal of Advanced Computer Science and Applications, 2014, 4(2):13-19.
[5] Sparckjones K. Information retrieval and artificial intelligence[J]. Artificial Intelligence, 1999, 114(1): 257-281.
[6] Sebastiani F. Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002, 34(1): 1-47.
[7] Ohsawa Y, Benson N, Yachida M, et al. Automatic Indexing by Co-Occurrence Graph Based on Building Construction Metaphor[C]// the Advances in Digital Libraries Conference. Los Alamitos:IEEE Computer Society, 1998:12.
[8] Witten I, Paynter G, Frank E, et al. KEA: practical automatic keyphrase extraction[C]//ACM international conference on digital libraries. New Zealand: University of Waikato,1999: 254-255.
[9] Yutaka M, Yukio O, Mitsuru I. KeyWorld: Extracting Keywords from a Document as a Small World[M]. Berlin : Springer,2001:271-281.
[10] Erkan G, Radev D R. LexRank: Graph-based lexical centrality as salience in text summarization[J]. Journal od Articial Intelligence Research, 2004,22(1):457-479.
[11] Litvak M, Last M, Aizenman H, et al. DegExt - A Language-Independent Graph-Based Keyphrase Extractor [J]. Advances in Intelligent Web Mastering,2011,86(1):121-130.
[12] Turney P. Learning to Extract Keyphrases from Text[J]. arXiv: Learning, 1999,1(1):1-43.
[13] Liu Z, Chen H, Yu Y, et al. Extracting Keywords with TextRank and Weighted Word Positions[J]. Data Analysis and Knowledge Discovery, 2018, 2(9): 74-79.
[14] Boudin F. A Comparison of Centrality Measures for Graph-Based Keyphrase Extraction[C]// international joint conference on natural language processing. Japan: Nagoya,2013: 834-838.
[15] Zhou Z, Zou X, Lv X, et al. Research on Weighted Complex Network Based Keywords Extraction[M]. Berlin:Springer, 2013: 442-452.
[16] Lahiri S, Choudhury S R, Caragea C, et al. Keyword and Keyphrase Extraction Using Centrality Measures on Collocation Networks[J]. Computation and Language, 2014,25 (2):1-11.
[17] Page L, Brin S, Motwani R, et al. The PageRank Citation Ranking: Bringing Order to the Web[C]// the web conference.USA:Stanford InfoLab, 1999: 161-172.
[18] Abilhoa W, De C. A keyword extraction method from twitter messages represented as graphs [J]. Applied Mathematics and Computation, 2014, 240: 308-325.
[19] Beliga S, Mestrovic A, Martinccicipsic S, et al. Toward Selectivity Based Keyword Extraction for Croatian News[J]. arXiv: Computation and Language, 2014,7(17):1-14.
[20] Oliveros D, Gomes P, Milios E, et al. A multi-centrality index for graph-based keyword extraction[J]. Information Processing and Management, 2019, 56(6):8-18. |