[1] Beaton R K, Dyn N. Multiquadic B-Splines[J]. Journal of Approximation Theory, 1996, 87(1):1-24. [2] De Boor C, Ron A. Fourier analysis of the approximatio power of principal shift-invariant spaces[J]. Constructive Approximation, 1992, 8(4): 427-462. [3] Feng Y Y, Kozka J. On convexity and Schoenberg’s variation diminishing splines[J]. Journal of China University of Science and Technology, 1994, 24(2): 129-134. [4] Greville T. Introduction to spline functions[M]//Greville T. Theory and applications of spline functions. New York: Academic Press, 1969: 1-36. [5] 徐志伟,吴宗敏.基于B样条构造高精度拟插值[J].复旦学报:自然科学版,2010,49(4):506-512. [6] Wu Z M, Schaback R , Sharp preserving properties and convergence of univariate multiquadric quasi interpolation[J]. Acta Mathematicae Applicatae Sinica , 1994,10(4):441-446. [7] Wu Z M ,Liu J P. Generalized strang-fix condition for scattered data quasi-interpolation[J]. Advances in Computation Mathematics, 2005,23(2): 201-214. [8] Zhang W X,Wu Z M. some sharp-preserving quasi-interpolants to non-uniformly distributed data by MQB-Splines[J]. Appl Math J Chinese Univ, 2004,19(2):191-202. |