[1] LI N,REN J,WANG L, et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond[J]. Reviews of Modern Physics, 2012, 84(3):1045-1066. [2] LEPRI S, LIVI R, POLITI A. Thermal conduction in classical low-dimensional lattices[J]. Physics Reports, 2003, 377(1): 1-80. [3] ZHANG Z,OUYANG Y,CHENG Y, et al. Size-dependent phononic thermal transport in low-dimensional nanomaterials[J]. Physics Reports, 2020, 860: 1-26. [4] RIEDER Z, LEBOWITZ J L, LIEB E. Properties of a harmonic crystal in a stationary nonequilibrium state[J]. Journal of Mathematical Physics, 1967, 8(5): 1073-1078. [5] ANDERSON P W. Absence of diffusion in certain random lattices[J]. Physics Review, 1958, 109(5):1492-1505. [6] MATSUDA H, ISHII K. Localization of normal modes and energy transport in the disordered harmonic chain[J]. Progress of Theoretical Physics Supplement, 1970, 45: 56-86. [7] ISHII K. Localization of eigenstates and transport phenomena in the one-dimensional disordered system[J]. Progress of Theoretical Physics Supplement, 1973, 53: 77-138. [8] RUBIN R J, GREER W L. Abnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystal[J]. Journal of Mathematical Physics, 1971, 12(8): 1686-1701. [9] RICH M, VISSCHER W M. Disordered harmonic chain with self-consistent reservoirs[J]. Physical Review B, 1975, 11(6): 2164-2170. [10] VERHEGGEN T. Transmission coefficient and heat conduction of a harmonic chain with random masses: Asymptotic estimates on products of random matrices[J]. Communications in Mathematical Physics, 1979, 68(1): 69-82. [11] DHAR A. Heat conduction in the disordered harmonic chain revisited[J]. Physical Review Letters, 2001, 86(26): 5882-5885. [12] DHAR A, ROY D. Heat transport in harmonic lattices[J]. Journal of Statistical Physics, 2006, 125(4): 801-820. [13] DHAR A. Heat transport in low-dimensional systems[J]. Advances in Physics, 2008, 57(5): 457-537. |