[1] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4: 366-377. [2] JI L W, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environment Science, 2011, 4: 2682-2699. [3] KANG Y M, SONG M S, KIM J H, et al. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery[J]. Electrochima Acta,2005,50:3667-3673. [4] XIA S, LIU T, HUANG W J, et al. Extended π-conjugated N-containing heteroaromatic hexacarboxylate organic anode for high-performance Li-ion batteries [J]. Journal of Energy Chemistry, 2020, 51: 303-311. [5] XIA S, YAN Y X, HUANG W J, et al. In-situ synthesis of nanocomposite from metal-organic frameworks template for high-performance rechargeable batteries[J]. Journal of Power Source, 2020, 464: 228247. [6] 李俊莉,黄文进,杨润芳,等. Mn掺杂Co0.9Mn0.1P/RGO复合电极材料的合成及其电化学性能[J]. 江西冶金, 2020, 40: 22-26. [7] HUANG W J, ZHENG J Y, LIU J J, et al. Boosting rate performance of LiNi0.8Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate[J]. Journal of Alloys and Compounds, 2020, 827: 154296. [8] LI L, HONG Y J, CHEN D Y, et al. A laterally extended perylene hexacarboxylate via diels-alder reaction for high-performance organic lithium-ion batteries [J]. Electrochimica Acta, 2017, 254: 255-261. [9] CASTILLO-MARTíNEZ E, CARRETERO-GONZáLEZ J, ARMAND M. Polymeric schiff bases as low‐voltage redox centers for sodium‐ion batteries [J]. Angewandte Chemie International Edition, 2014, 53: 5341-5345. [10] XU S, WANG G, BISWAL B P, et al. A nitrogen‐rich 2D sp2‐carbon‐linked conjugated polymer framework as a high‐performance cathode for lithium‐ion batteries [J]. Angewandte Chemie International Edition, 2019, 58: 849-853. [11] YUAN C Z, WU H B, XIE Y, et al. Mixed transition-metal oxides: design, synthesis, and energy-related applications [J]. Angewandte Chemie International Edition, 2014, 53: 1488-1504. [12] KENNEDY T, MULLANE E, GEANEY H, et al. High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network [J]. Nano Letters, 2014, 14: 716-723. [13] WU D, WANG C, WU M, et al. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage [J]. Journal of Energy Chemistry, 2020, 43: 24-32. [14] WU H, YU G, PAN L, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles [J]. Nature Communications, 2013, 4: 1943. [15] DONG J, XUE Y, ZHANG C, et al. Improved Li+ storage through homogeneous N-doping within highly branched tubular graphitic foam [J]. Advanced Materials. 2017, 29: 1603692. [16] XU S, WANG G, BISWAL B P, et al. A nitrogen‐rich 2D sp2‐carbon‐linked conjugated polymer framework as a high‐performance cathode for lithium‐ion batteries [J]. Angewandte Chemie International Edition, 2019, 58: 849-853. [17] YANG Y, LIU X, DAI Z, et al. In situ electrochemistry of rechargeable battery materials: status report and perspectives [J]. Advanced Materials, 2017, 29: 1606922. [18] LUO C, XU G L, JI X, et al. Reversible redox chemistry of azo compounds for sodium‐ion batteries [J]. Angewandte Chemie International Edition, 2018, 57: 2879-2883. [19] LUO Z, LIU L, NING J, et al. A microporous covalent organic framework with abundant accessible carbonyls for lithiumion batteries [J]. Angewandte Chemie International Edition, 2018, 57: 9443-9446. [20] XIA S B, YAO L F, GUO H, et al. Li+ intercalcation pseudocapacitance in Sn-based metal-organic framework for high capacity and ultra-stable Li ion storage[J]. Journal of Power Source, 2019, 440: 227162. |