[1] ZHUANG P, ZOU H, SHU W. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study[J]. Journal of Environmental Sciences, 2009, 21:849-853. [2] LIAO D X, ZHENG W, LI X M, et al. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste[J]. Journal of Hazardous Materials, 2010, 177:126-130. [3] ZHENG W, LI X M, YANG Q, et al. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxyapatite derived from eggshell waste[J]. Journal of Hazardous Materials, 2007, 147:534-539. [4] GAO X P, GUO C, HAO J J, et al. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives[J]. International Journal of Biological Macromolecules, 2020, 164:4423-4434. [5] CHEN Q Y, YAO Y, LI X Y, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 2018, 26:289-300. [6] MARINA M, VLADIMIR I, NATALIA Y, et al. The effect of heavy metal ions hydration on their sorption by a mesoporous titanium phosphate ion-exchanger [J]. Journal of Water Process Engineering, 2020, 35: 57-64. [7] JUANG R S, SHIAU R C. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration[J].Journal of Membrance Science, 2000, 165:159-167. [8] 郑伟, 李小明, 曾光明, 等. 碳羟磷灰石(CHAP)对废水中Cd2+的吸附研究[J]. 环境科学学报, 2006, 26(11):1851-1854. [9] 张婷, 朱慧霞, 韩琮, 等. 碳羟基磷灰石/钾长石复合材料对镍的吸附性能研究[J]. 无机盐工业, 2020, 52(2):30-34. [10] 祝振球, 周静, 徐磊, 等. 模拟酸雨对微米和纳米羟基磷灰石稳定化污染土壤的铜和镉淋溶效应[J]. 生 态与农村环境学报, 2017, 33(3):265-269. [11] CHOU J, BEN N B, CHOI AH, et al. Conversion of coral sand to calcium phosphate for biomedical applications[J]. Journal of Australian Ceramic Society, 2007, 43:44-48. [12] IVANKOVIC H, TKALCEC E, ORLIC S, et al. Hydroxyapatite formation from cuttlefish bones: kinetics[J]. Journal of Materials Science-Materials in Medicine, 2010, 21:2711-2722. [13] SANOSH K P, CHU M, BALAKRISHNAN A, et al. Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders[J]. Materials Letters, 2009, 63: 2100-2102. [14] 徐珍. 方解石基羟基磷灰石的制备及其对水中氟化物的去除效能研究[J]. 环境污染与防治, 2014, 36(1):35-41. [15] LEE Y, HAHM Y M, LEE D H, et al. Preparation and characterization of macroporous carbonate-substituted hydroxyapatite scaffold [J]. Industrial & Engineering Chemistry, 2008, 47: 2618-2622. [16] MAVROPOULOS E, ROSSI A M, COSTA A M, et al. Studies on the mechanisms of lead immobilization by hydroxyapatite[J]. Environmental Science & Technology, 2002, 36:1625-1629. [17] 唐文清. 碳羟基磷灰石的合成及吸附性能的研究[D]. 长沙:湖南大学, 2006. [18] KUMAR G S, THAMIZHAVEL A, GIRIJA E K. Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications[J]. Materials Letters, 2012, 76:198-200. [19] SIDDHARTHAN A, SAMPATH T S, SESHADRI S K. Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios[J]. Biomedical Materials, 2009, 4:045010. [20] 葛冬梅, 孙峰, 王震. 蛋壳水热法合成羟基磷灰石[J]. 河北师范大学学报(自然科学版), 2013, 37(1):60-64. [21] LIU J, LI K, WANG H, et al. Rapid formation of hydroxyapatite nanostructures by microwave irradiation[J]. Chemical Physics Letters, 2004, 396:429-432. [22] 廖建国, 刘琼. 微波法合成纳米羟基磷灰石晶体及表征[J]. 稀有金属材料与工程, 2014, 43(7):1779-1782. [23] 朱婷婷, 于振, 吴柳明. 纳米羟基磷灰石对Cu2+的吸附[J]. 济南大学学报(自然科学版), 2011, 25(2):142-145. [24] HO Y S, MCKAT G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34:451-465. [25] KALUDJEROVIC-RADOICICA T, RAICEVIC S. Aqueous Pb sorption by synthetic and natural apatite: kinetics, equilibrium, and thermodynamic studies[J]. Chemical Engineering Journal, 2010,160 (2): 503-510. |