曲靖师范学院学报 ›› 2022, Vol. 41 ›› Issue (3): 75-81.

• 计算机科学研究 • 上一篇    下一篇

一种多图像前景对应性的融合显著性检测算法研究

刘磊   

  1. 四川商务职业学院 科研处,四川 成都 610000
  • 收稿日期:2022-03-18 出版日期:2022-05-26 发布日期:2022-06-02
  • 作者简介:刘磊,四川商务职业学院科研处副教授,主要从事数字图像处理、机器学习研究.
  • 基金资助:
    四川高等职业教育研究中心课题“基于大数据的职业教育与乡村振兴协同发展研究”(GZY21B04).

A Joint Salience Detection Algorithm Based on Multi-image Foreground Correspondence

LIU Lei   

  1. Research Department, Sichuan Vocational College of Business, Chengdu Sichuan 610000,China
  • Received:2022-03-18 Published:2022-05-26 Online:2022-06-02

摘要: 为过滤图像中的冗余信息,使显著性检测结果更加稳定,提出了一种面向多幅图像的基于前景对应性的融合显著性检测算法.首先对图像显著性区域进行粗略定位,然后采用边界连续性从凸包中选择准确的前景区域;其次在提取出前景显著图之后,对背景进行显著性检测;最后将对应前景区域与基于背景的显著图进行融合生成最后的显著图.结果显示,融合显著图的MAE值最低能够达到0.069,既优于其他算法,也优于单一检测的显著图的MAE值.说明结合背景的前景对应性显著性检测算法在多图像检测时具有良好的检测能力,在计算机视觉领域具有重要的研究意义和应用前景.

关键词: 多图像, 前景, 融合性显著, 显著性检测

Abstract: A joint salience detection algorithm based on foreground correspondence for multiple images is proposed to filter the redundant information in the image. The accurate foreground region is selected from the convex hull by using the boundary continuity, and then the corresponding foreground region is fused with the background based salience map to generate the final joint salience map. The results show that the minimum value of joint salience map can reach 0.071 because of other algorithms and the MAE value of single detection salience map, which indicates that the foreground correspondence salience detection algorithm combined with background has good detection ability in multi-image detection, and has important research significance and application prospect in the field of computer vision.

Key words: multi image, foreground, joint salience, salience detection

中图分类号: